首页> 外文OA文献 >Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow
【2h】

Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow

机译:基于网格离散化的多重稳定性切换延迟搜索算法:人在可控摇摆弓上的运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Delay represents a significant phenomenon in the dynamics of many human-related systems - including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial - the roots of which decide about stability - is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on - and verified by - a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays. © 2017 Pekař et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
机译:延迟是许多与人类相关的系统(包括生物系统)动力学中的重要现象。它有对系统稳定性具有决定性的影响,而对这种影响的研究通常在数学上要求很高。本文提出了一种计算简单的数值网格算法,用于确定多延迟线性系统的稳定裕度延迟值。准多项式的特征(其根源决定稳定性)通过预变形的双线性变换进行迭代离散化。然后,应用线性插值和二次插值,以获得具有整数次幂的关联特征多项式。关联特征多项式的根与原始特征拟多项式的根的估计紧密相关,该估计与系统的特征值一致。由于前导边界越过了稳定边界,因此使用Regula Falsi插值方法可以增强切换根轨迹。我们的方法是基于一个数字化的生物网络论证示例,该示例论证了人在受控的摇摆弓上运动的稳定性。提出的新颖算法的优点在于可以通过用于技术计算的标准程序来快速计算多项式零。在所需的数学知识水平较低的情况下;并且,以足够高的根轨迹估计精度。还讨论了与直接搜索拟多项式(映射)Rootfinder算法的关系以及计算复杂性。该算法也适用于延迟不相称的系统。 ©2017Pekař等。这是根据知识共享署名许可协议的条款分发的开放获取文章,该条款允许在任何媒介中无限制地使用,分发和复制,但要注明原始作者和出处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号